

Typical Features

- ◆ Wide input voltage range, non-isolated & regulated output
- ◆ Efficiency up to 94%
- ◆ Low standby power consumption, available for negative output
- ◆ High power density, Mini size SIP package
- ◆ With overheat protection, output short circuit protection
- ◆ Operating temperature from -40°C to +95°C
- ◆ Plastic case, flame class UL94-V0

Application Field

This series of products can be widely used in the fields of instrument, communication, pure digital circuit, general low frequency analog circuit, relay drive circuit, data exchange circuit, etc.

Typical Product List

Certificate	Part No.	Input Voltage Range		Output Voltage/Current (Vo/Io)		Capacitive Load (uF) (Max)	Efficiency (%) @Full load	
		Nominal (VDC)	Range (VDC)	Vo (VDC)	Io (mA)		Vin (Min)	Vin (Typ.)
-	K7803M-3000	24	6.5-32	3.3	3000	4700	90	87
		12	6.5-27	-3.3	-2000	2200	83	86
-	K7805M-3000	24	6.5-32	5	3000	4700	91	89
		12	6.5-27	-5	-2000	2200	85	88
-	K7809M-3000	24	12-32	9	2500	2200	92	92
		12	8-23	-9	-1000	1000	87	89
-	K7812M-3000	24	15-32	12	2500	2200	94	93
		12	8-20	-12	-1000	1000	84	86
-	K7815M-3000	24	18-32	15	2500	1000	93	92
		12	10-17	-15	-1000	470	85	87

Note: It is recommended to use an electrolytic capacitor (47uF/50V) at the input to protect the unit against the peak voltage when the input voltage is more than 27VDC.

Input Specifications

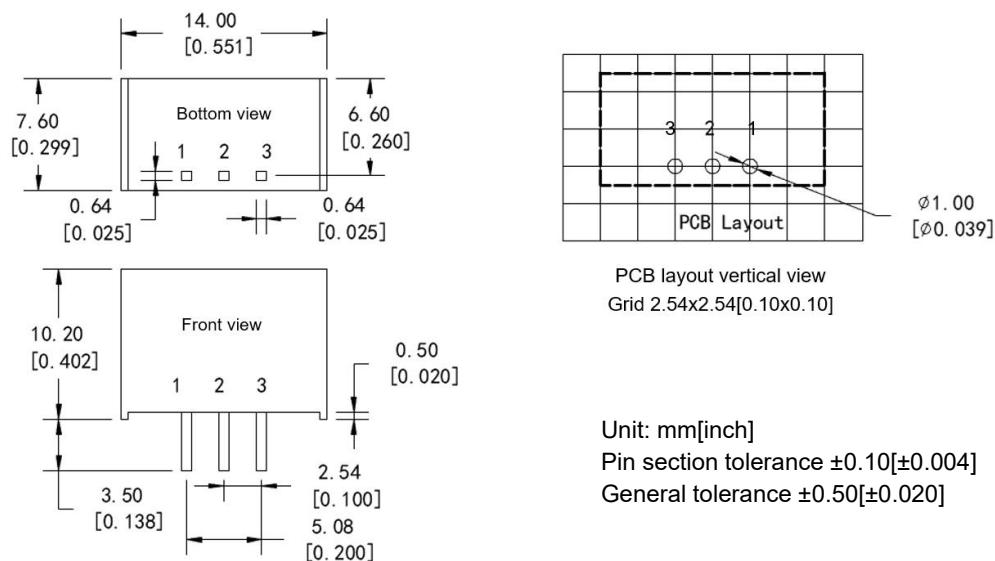
Item	Test Condition		Min.	Typ.	Max.	Unit
No load input current	Full input voltage range	Positive output	--	0.2	1	mA
		Negative output	--	1	4	
Full load input current	3.3V output		--	474	1731	mA
	-3.3V output		--	640	1254	
	5V output		--	702	2653	mA
	-5V output		--	950	1854	
	9V output		--	1019	2083	mA

	-9V output	--	843	1324		
	12V output	--	1344	2174		
	-12V output	--	1163	1829		
	15V output	--	1698	2289		
	-15V output	--	1437	1807		
Input reversed	Not allowed					
Input filter	Capacitor Filter					
Hot plug	Unavailable					

Output Specifications

Item	Test Condition		Min.	Typ.	Max.	Unit
Output voltage accuracy	Full input voltage range, 0%-100% load		--	±1	±2	%
Line regulation	Full input voltage range, 100% load		--	±0.3	±0.5	%
Load regulation	0% - 100% load	Positive output	--	1	2	%
		Negative output	--	2	3	
Transient response deviation	25% load step change, nominal input voltage		--	50	300	mV
Transient recovery time			--	0.2	1	μs
Temperature drift coefficient			--	--	±0.03	%/°C
Ripple & Noise	0%-100% load, 20MHz bandwidth	3.3 & 5V output	--	40	75	mVp-p
		Others	--	100	150	
Over current protection	Full input voltage range		--	200	--	%Io
Short circuit protection	Continuous, self-recovery					

Note: The Ripple & Noise is tested by the Twisted Pair Method, please refer to the following test instruction.

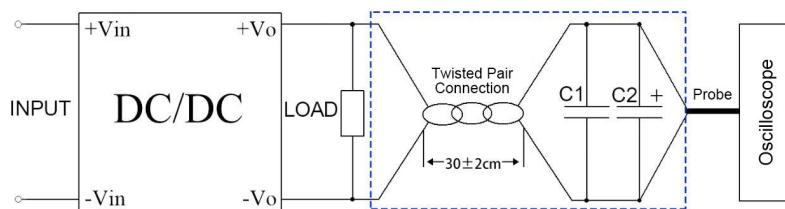

General Specifications

Item	Test Condition	Min.	Typ.	Max.	Unit
Switching frequency	Nominal input voltage, full load	--	300	--	KHz
Operating temperature	Refer to the Temperature Derating Graph	-40	--	+95	°C
Storage temperature		-55	--	+125	°C
Case temperature	Within the operating derating range	--	--	+110	°C
Pin soldering temperature	1.5mm from the case, soldering time 10S	--	--	300	°C
Relative humidity	No condensing	5	--	95	%RH
MTBF	MIL-HDBK-217F@25°C	1000	--	--	K hours
Vibration	10-150Hz, 5G, 30 Min. along X, Y and Z				
Case material	Plastic in Black, flame class UL94-V0				
Unit weight	2.6g (Typ.)				
Cooling method	Natural air				
Packing	Tube size (526x9.5x17mm)	35PCS/Tube			
	Carton size (542x110x155mm)	2800PCS (total 80 tubes)			
Unit dimensions	L x W x H	14.00×7.60×10.20 mm	0.551×0.299×0.402 inch		

EMC Performance

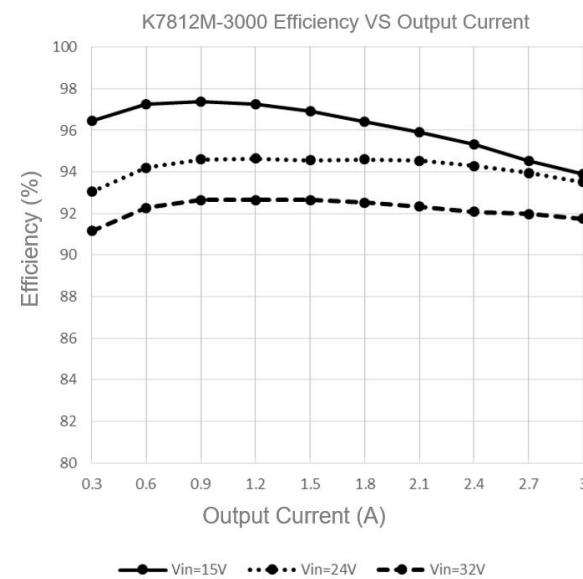
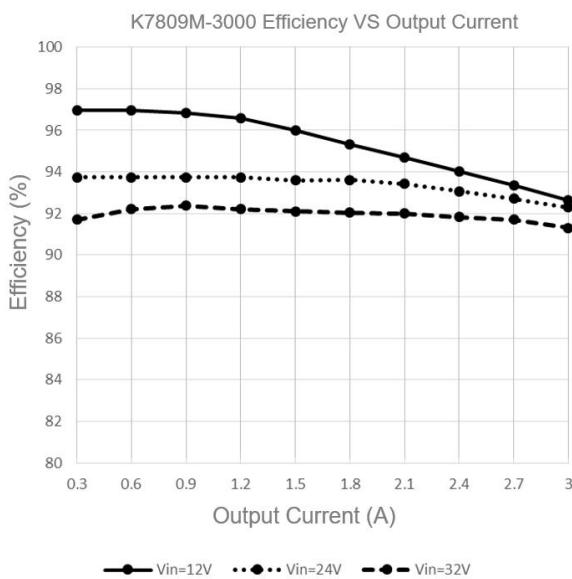
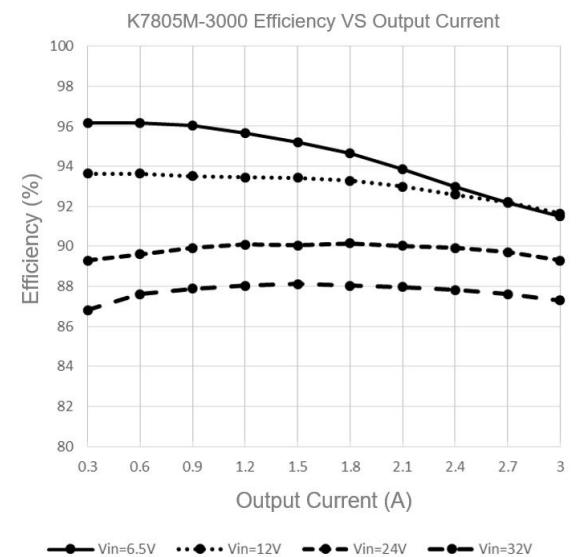
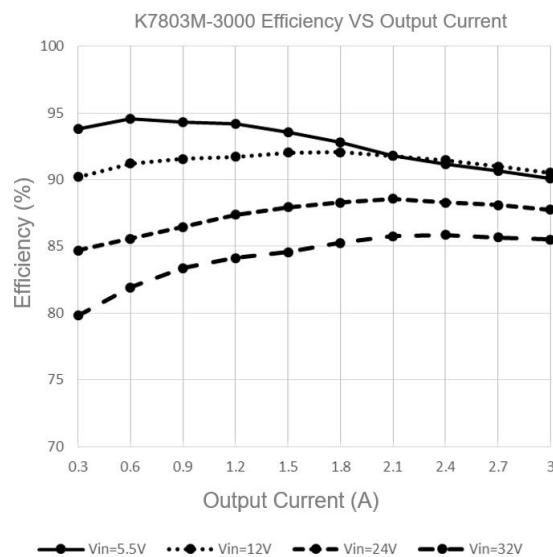
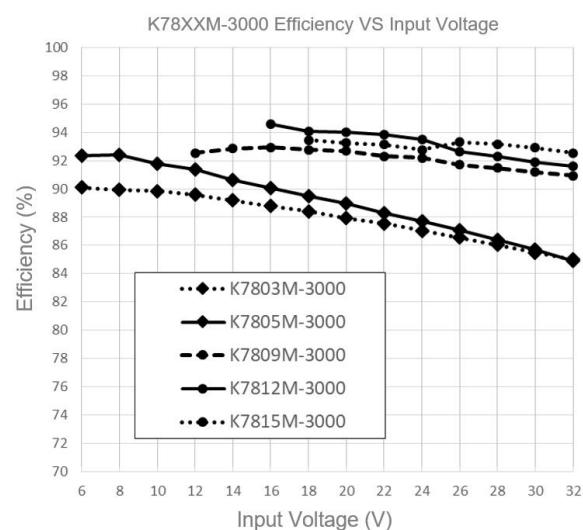
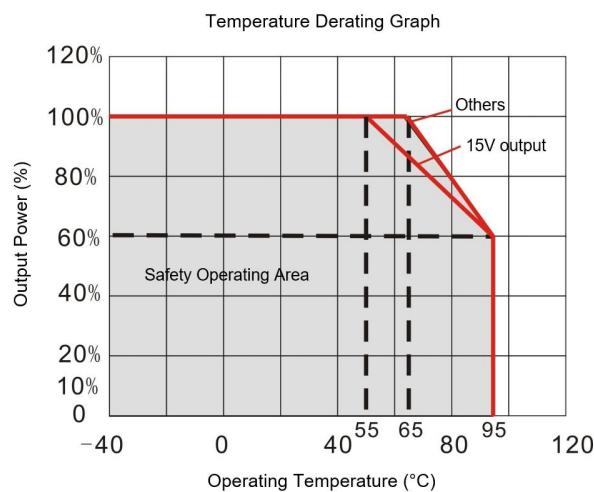
Item		Test Standards	Performance/Class
EMI	CE	CISPR32/EN55032	Class B (with the Recommended EMC circuit)
	RE	CISPR32/EN55032	Class B (with the Recommended EMC circuit)
EMS	ESD	IEC/EN61000-4-2	Contact $\pm 8\text{kV}$ perf. Criteria B

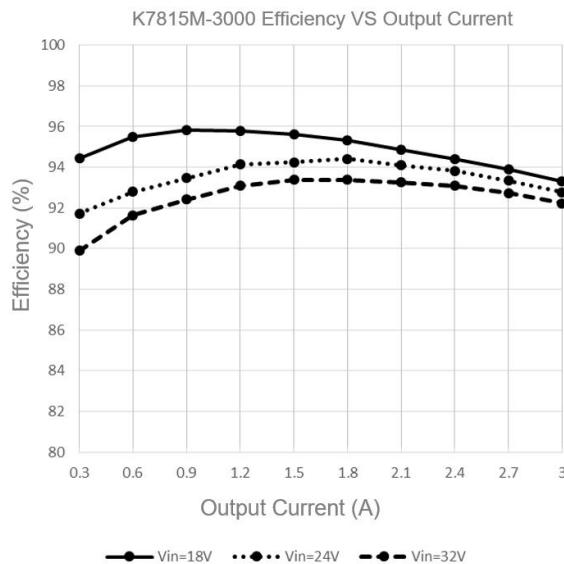
Mechanical Dimensions



Pin-out Function Description

Pin No.	1	2	3
Positive output	+Vin	GND(Common)	+Vo
Negative output	+Vin	-Vo	GND(Common)







Note: Please take the pin definition on the product label as the right one if it is different than the data sheet description.


Ripple & Noise Test Instruction (Twisted Pair Method, 20MHZ bandwidth)

1. The Ripple & noise test needs 12# twisted pair cables, an oscilloscope which should be set at the Sample Mode, bandwidth 20MHz. 100M bandwidth probe with cap and ground removed. C1(0.1uF) polypropylene capacitor and C2(10uF) high frequency low impedance electrolytic capacitor are connected in parallel with the probes and one side of the twisted pair.
2. Refer to the test diagram, the converter output connects to the electronic load by the jig with cables which size should be defined according to the output current value. The other side of the twisted pair (length $30\text{cm}\pm 2\text{cm}$) should be connected in parallel with the load. The test can start after the input power on.
3. It is recommended to use a $\geq 10\%$ load or a high frequency low impedance electrolytic capacitor ($\geq 100\mu\text{F}$) load at the output to avoid the output ripple increasing.

Product Characteristics Graphs

Recommended Circuits for Application

1. Requirement for the output load

The maximum capacitive load is tested at the full load. The converter may not start or be damaged at the capacitive over-load.

2. Typical application circuits

To effectively decrease the input and output ripple and noise, a capacitor filter net can be used at the input and output as below circuit diagrams (Figure 1 for the Positive output application, Figure 2 for the Negative output application and Figure 3 for Positive & Negative outputs connected in parallel application, 10uH is recommended for LDM). Suitable filtering capacitors should be chosen as the recommended capacitive load values in Table 1. The converter could not start if the capacitance is too big. (The capacitances of C1 C2 can be increased according to the actual situation, low ESR Tantalum capacitors or Electrolytic capacitors can be used.)

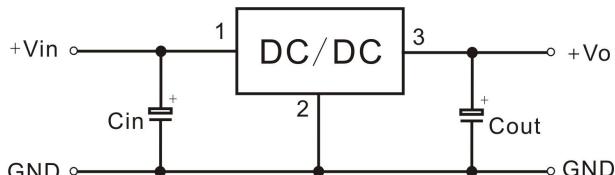


Figure 1 (Positive output circuit diagram)

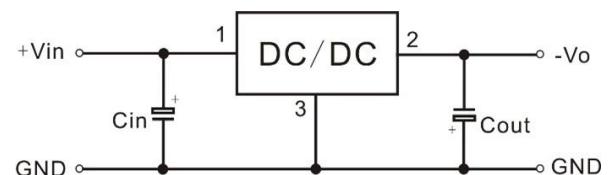


Figure 2 (Negative output circuit diagram)

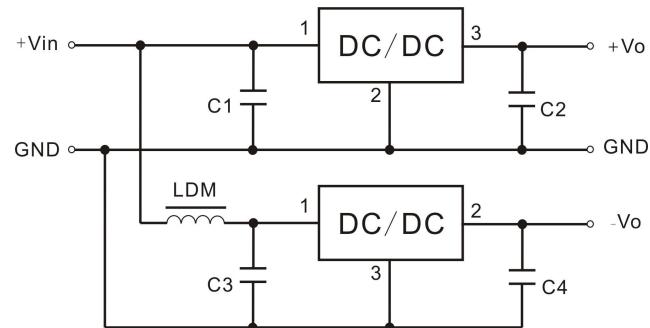
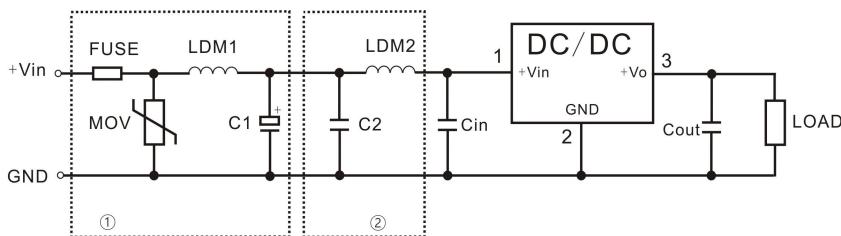
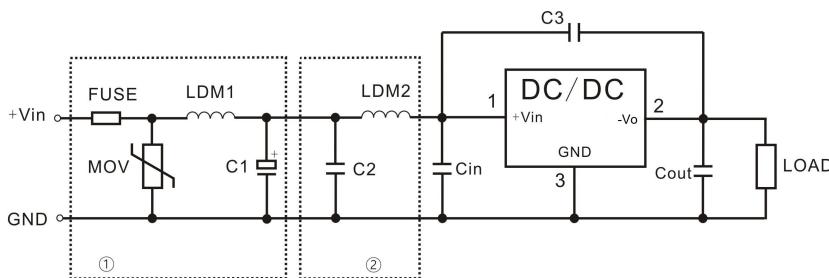



Figure 3 (Positive & negative outputs parallel application circuit diagram)

Part No.	Recommended Capacitive Load Values (Table 1)			
	Cin (Electrolytic capacitor)	C1/C3 (Ceramic capacitor)	Cout (Electrolytic capacitor)	C2/C4 (Ceramic capacitor)
K7803M-3000	47uF/50V	22uF/50V	100uF/16V	47uF/10V
K7805M-3000	47uF/50V	22uF/50V	100uF/16V	47uF/10V
K7809M-3000	100uF/50V	47uF/50V	220uF/16V	47uF/16V
K7812M-3000	100uF/50V	47uF/50V	220uF/25V	47uF/25V
K7815M-3000	100uF/50V	47uF/50V	220uF/25V	47uF/25V


3. Recommended EMC circuit diagrams

Positive output circuit diagram

FUSE	TBD by the input current
MOV	20D330K
C1	680uF/50V
C2	4.7uF/50V
Cin/Cout	Refer to Table 1
LDM1	82uH
LDM2	6.8uH

Negative output circuit diagram

FUSE	TBD by the input current
MOV	20D330K
C1	680uF/50V
C2/C3	4.7uF/50V
Cin/Cout	Refer to Table 1
LDM1	82uH
LDM2	6.8uH

Note: Part ① circuit is for EMS test, part ② for EMI filtering, both can be adjusted according to the actual situation.

Application Notice

1. The product is not available to be used in parallel, and not available for hot-plug.
2. The product should be used according to the specifications, otherwise it could be permanently damaged.
3. The product performance cannot be guaranteed if it works at a lower load than the minimum load defined.
4. The product performance cannot be guaranteed if it works under over-load condition.
5. Unless otherwise specified, all values or indicators on this datasheet are tested at $T_a=25^{\circ}\text{C}$, humidity<75%RH, nominal input voltage and rated load (pure resistance load).
6. All values or indicators on this datasheet have been tested based on Aipupower test specifications.
7. The specifications are specially for the parts listed on this datasheet, any other non-standard model performances could be out of the specifications. Please contact our technician for specific requirements.
8. Aipupower can provide customization service.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: <https://www.aipupower.com>